

Inhomogeneous cloud parameters retrieval from multispectral and multiscale information by using neural network: Test with MODIS data

C. Cornet^{(1,2),}

- J.C. Buriez^{(1),} J. Riédi⁽¹⁾, H. Isaka⁽²⁾, B. Guillemet⁽²⁾
- (1) Laboratoire d'Optique Atmosphérique (LOA) Université des sciences et Technologies de Lille, France
- (2) Laboratoire de Météorologie Physique (LAMP), Université Blaise Pascal, Clermont-Ferrand, France

Homogeneous cloud assumption

- Usual cloud parameter retrieval = homogeneous clouds assumption
- ⇒ Errors on retrieval parameter due to cloud inhomogeneity:

Optical thickness

Effective radius

Errors due to the cloud heterogeneity

• nonlinearity effect of radiance as a function of optical thickness "Plane-parallel bias" (Cahalan et al., 1994; Loeb et al., 1997, Szczap et al., 2000)

 $\tau_{\text{true}} \neq \tau_{\text{IPA}}$ because of neighboring pixels

- Radiative smoothing
- Shadowing and brightness effects (Marshak et al.,1995; Davis et al., 1997; Loeb et al., 1998; Oreopoulos et al., 2000; Varnai et al. 2000; Varnai et Marshak, 2002)

• Improvements of observational capabilities

GLI (2002); MERIS (2002); MISR (2000); MODIS (2000; 2002); POLDER (1997; 2002)

Heterogeneous cloud model

A 1kmx1km:

- ✓ Mean optical thickness
- ✓ Mean effective radius
- ✓ Cloud top temperature
- ✓ Sub-pixel fractional cloud cover
- ✓ Optical thickness heterogeneity
- ✓ Effective radius heterogeneity

Relation between visible radiances and optical thickness

Relation between near-infrared radiances and effective radius (cf > 0.8)

Relation between infrared radiances and fractional cloud cover

A tool: the neural networks

- Increase of data and parameters
- ⇒ Usual method (look-up table, cost function...) very difficult to use
- ⇒ Use of neural network (Faure et al., JGR, 2001; Cornet et al., JGR, 2004)

Need to adjust the weight and biases = training stage

⇒ need a database composed of associated input and output

Database building

Cloud field: bounded cascade cloud model

(128x128 elementary pixels of 50x50m²)

- correlation between τ and Re fields
- cloud geometric depth varies as the square root of $\boldsymbol{\tau}$ with a mean value of 300m
- cloud base: 1200 m (for all the solar wavelength)

Radiances simulation: SHDOM

- angular step of 2.5° for the solar and view zenithal angle 5° for the view azimuthal angle
- for thermal band: 3 surface temperatures (276, 280 and 284 K)

3 cloud base height (0.90, 1.20 and 1.50 km)

Database building

Selection of 20x20 $pixels \Rightarrow 1kmx1km$

Average on 20x20 $pixels \Rightarrow 1kmx1km$

> Average on 5x5 pixels \Rightarrow 250mx250m

- Mean optical thickness : τ
- Mean effective radius : re
- Optical thickness heterogeneity : σ_{τ}
- Effective radius heterogeneity : σ_{ra}
- Fractional cloud cover: cf
- Cloud top temperature: T_{cl}

Use of multi-scale information

Relation between standard deviation of visible radiances and optical thickness heterogeneity

Training

Input vector (8 components):

- 1) Mean visible radiances (0.865μm)
- 2) Mean radiances at 1.6 µm
- 3) Mean radiances at 2.2 µm
- 4) Mean radiances at 11 μm
- 5) Standard deviation of visible radiances
- 6) Surface temperature
- 7) Zenithal angular distance
- 8) Azimuthal angular distance
- 9) Solar zenithal angular distance

Training done with 20000 examples
2 hidden layers with 5 neurons
Back-propagation algorithm with Bayesian regularization

Comparison with the homogeneous assumption

Optical thickness

Effective radius

•Small Re: multiple solution + fractional cloud cover presence

Test with a different kind of cloud

Tests with two kinds of synthetic inhomogeneous and fractional clouds:

- 1) Bounded cascade clouds with different conditions than during training
 - Solar incidence: 57°
 - Observation angles: $(\theta_v = 15^\circ, \phi_v = 125^\circ)$

- 2) Gaussian process clouds
 - Solar incidence: 58°
 - Observation angles: $(\theta_v = 15^\circ, \phi_v = 125^\circ)$

Test with synthetic data

Mean optical thickness

Mean effective radius

Test from MODIS data

Limited database ⇒selection of a cloudy scene:

- Stratocumulus clouds with fractional cloud cover
- oceanic surface: 5 m/s
- sun ~ 60°; θ_v ~ 15°-35°; ϕ_v ~ 120°

9 February 2003 (West USA): 200x200km scene

Optical thickness and effective radius retrieval

Optical thickness retrieval

Comparison with MODIS products

Effective radius retrieval

Comparison with MODIS products

$$\tau_{3D} < \tau_{1D} \Leftrightarrow$$
 "brightness effects", $Re_{3D} > Re_{1D}$

$$\tau_{3D} >= \tau_{1D} \Leftrightarrow$$
 "shadowing effects", $Re_{3D} < Re_{1D}$

Optical thickness heterogeneity and fractional cloud cover retrieval

Fractional cloud cover retrieval

Comparison between:

- neural network retrieval at 4km
- estimation of fractional cloud cover at 4km from visible radiances at 250m (threshold: [R_{min}+(R_{max}-R_{min})/5])

Optical thickness heterogeneity retrieval

Comparison between:

- neural network retrieval at 4km
- estimation at 4km with the standard deviation of visible radiance from 250m

Cloud top temperature retrieval

Comparison with MODIS products

Conclusion

- Retrieval procedure for inhomogeneous and fractional clouds:
 - ✓ Based on neural network techniques
 - ✓ Based on the use of multispectral and multiscale informatio
- Test on the retrieval procedure:
 - With a different synthetic cloud in different conditions
 - With MODIS data
- \Rightarrow Possibility to retrieve with a better accuracy: τ ; r_{eff} ; T_{cloud}
- \Rightarrow Possibility to retrieve new parameters: σ_{τ} ; σ_{reff} ; cf
 - Possible improvements:
 - More extensive test to know better the limits
 - ✓ Increase the database representativity and use of more "realistic" cloud to train neural network.

Retrieval above land

Possibility to remove ground albedo contribution

Retrieval above land

Solar incidence: 30°; azimuthal angle: 90°

Standard deviation of radiances at 1.6µm

Comparison with the homogeneous assumption

